Flame Retardant Graft Copolymers of Polypropylene

Described are polypropylene polymer compositions which have suprisingly good physical properties in combination with flame retardancy, which include graft copolymers represented by the formula: ##STR1## wherein n is >1, P is polypropylene, and S is a grafted side chain having brominated monomeric units of the formula: ##STR2## wherein x=1 to 4, R.sub.1 is H or CH.sub.3, and R.sub.2 is H or a C.sub.1-4 lower alkyl group. Polymer blends including such graft copolymers and methods for making flame retardant polymer compositions are also described.

SUGGESTED CITATION

Flame Retardant Graft Copolymers of Polypropylene, E. J. Termine, R. W. Atwell and N. A. Favstritsky, United States Patent No. 5,077,337.
Available at http://termine.com/archives/466

BACKGROUND OF THE INVENTION

This invention resides in the field of flame retardant polymers. More particularly, it relates to flame retardant polymer compositions which include graft copolymers of polypropylene and brominated vinyl aromatics such as brominated styrenes, and to methods for making these compositions.

By way of background, polypropylene has proven to be one of the most useful and versatile polymers. Its physical properties make it ideal for many applications including molded articles, spun fibers, hot melt adhesives and many others. These properties include, for instance, good solvent resistance, surface appearance and stain resistance, and low moisture absorption. However, polypropylene does not possess adequate flame retardancy for certain applications. In view of its other desirable physical properties, it has naturally been a matter of great interest to provide polypropylene compositions having greater flame retardancy.

Improvement of flame retardancy has relied on modifications to polypropylene, or on additives for the polypropylene, but disadvantages have been associated with both approaches. Although a vast number of modified polypropylene compositions have been described or theorized in the prior art, few if any suitable flame retardant polypropylene derivatives have been identified. Similarly, numerous additives for increasing the flame retardancy of polypropylene have been studied and some are commercially available. Nonetheless, there is at present no commercially available flame retardant additive for polypropylene which provides adequate retention of polypropylene’s physical properties, and demonstrates high thermal stability, non-migration of additive to the surface, and absence of solids at processing temperatures. The present invention contemplates a modification of polypropylene which yields a composition that retains the desirable physical properties of polypropylene, and avoids the disadvantages of alternate approaches.

In particular, the modified polypropylene of the invention avoids the frequently encountered migration or “bloom” of inert additive-type flame retardants to the surface of molded articles. Such bloom leads to unsightly surface discoloration on articles molded from the polypropylene and thereby effectively limits the amount of additive which can be used. Further, these inert additives frequently remain solid at processing temperatures, which can damage or foul processing equipment. For example, inert additives remaining solid at processing temperatures are known to cause problems by clogging spinnerettes used in equipment for producing spun fibers. This type of equipment fouling not only reduces the efficiency of processing but can also necessitate the costly refurbishment or premature replacement of equipment.

The applicants’ preferred modified polypropylenes also avoid many other problems encountered in the prior art by having only low levels of unreacted styrene monomer, typically less than 1% by weight. For example, by this aspect the applicants’ invention provides a vehicle to avoid monomer juicing problems known to occur in prior art graft modified compositions. It is also significant that the compositions of the present invention can be efficiently processed without the release of excessive volatile monomer into the surrounding environment, which can be hazardous to those working with or near the materials. The prior art has failed to appreciate these substantial advantages of the compositions of the present invention.

As noted above, known flame retardant additives for polypropylene have recognized drawbacks. One such additive is hydrated alumina, which retards flame by releasing water under fire conditions. However, high loadings of hydrated alumina are necessary to give desired efficacy, and this results in very poor physical properties of the polypropylene and articles molded therefrom.

Certain other available additives remain solid at normal polypropylene processing temperatures and thus complicate processing. Such additives include, for example, a bisimide-containing aliphatic bromine additive known as BN-451 from Ethyl Corp. of Sayreville, N.J., and a ring brominated polystyrene additive known as Pyro-Chek 68PB from Ferro Corp. of Cleveland, Ohio. The latter use of ring brominated polystyrene as an additive to polypropylene, rather than as a graft onto polypropylene, is a particularly clear demonstration of the failure of the prior art to recognize the present invention. Other available additives, such as decabromodiphenyl oxide, not only remain solid at processing temperatures but also are known to rise or “bloom” to the surface of molded articles.

Aside from these inert additives, reports exist in the literature of attempts to chemically bond or graft flame retardants to polypropylene. To the applicants’ knowledge, none of these techniques has been commercialized. For instance, M. Hartmann, et al., Z. Chem., 20(4), 146-7 (1980), report preparing graft copolymers of atactic polypropylene and four respective vinylphosphonic acid derivatives. Two of the four copolymers prepared were reported as self extinguishing when containing greater than 3% by weight phosphorous.

P. Citovicky et al., Thermochim. Acta., 93, 171-4 (1985), disclose a two-step procedure in which glycidyl methacrylate was grafted to isotactic polypropylene followed by reaction with various flame retardants including bromoacetic acid, 3,3′,5,5′-tetrabromo-2,2′-dihydroxybiphenyl, dichloroacetic acid, or phenyldihydrogen phosphate. The copolymer reacted with Ph dihydrogen phosphate gave the highest limiting oxygen index value and was also reported the most thermally stable. In general, this technique is not particularly advantageous since it requires two steps and the flame retardant must be a functionalized molecule capable of reaction with an epoxide.

B. J. Hill et al., Comm. Eur. Communities [Rep.] EUR, EUR 6718 (1980), report irradiation grafting of bis(2-chloroethyl)vinylphosphonate to polyester and polypropylene fabrics to render them self-extinguishing. The authors report that the bis(2-chloroethyl)vinylphosphonate had poor reactivity toward the fabrics. Comonomers were therefore required which in some instances diminished flame retardancy and/or stiffened the fabrics.

K. Nakatsuka et al., Japan JP 44/3965 (Feb. 19, 1969), report air oxidizing polypropylene at elevated temperatures to introduce peroxy groups to the polymer followed by graft polymerization with CH.sub.2 CClCO.sub.2 Me. The product was reported to be self-extinguishing.

Outside of the field of flame retardancy, various modifications to polyolefins have been proposed. For example, U.S. Pat. No. 4,179,401, issued to Garnett et al. in 1979, relates to a process for producing a heterogenous catalyst for the hydrogenation, hydroformylation, isomerization, cracking or dehydrogenation of organic molecules. The Garnett process comprises the steps of radiation grafting a monomer having an alpha- unsaturated bond to a metal or an organic polymer and complexing a nitrogen, halogen, or phosphorous containing group to the monomer. The Garnett et al. patent lists many possible polymer/monomer combinations. Identified polymer substrates included polyvinyl compounds, polyolefins, polyvinylidenes, polysiloxanes, polydienes, polyethers, polyimides, polysulphones, polyesters, polyamides, polyurethanes, polycarbonates and polyureas. Listed as possible monomers for use in the described process were p-nitrostyrene, p-amino styrene, p-chlorostyrene, vinyldiphenylphosphine, cis-bis (1,2-diphenylphosphino) ethylene, triallylphosphine, divinylphenylphosphine and many more.

Similarly, U.S. Pat. No. 3,177,270, issued to Jones et al. in 1965, describes a method for modifying polyethylene and other substrates for the purpose of improving tensile strength, elongation and/or flexural modulus. The Jones et al. patent specifically described the preparation of ethylene polymer modified with styrene, a styrene/acrylonitrile mixture, dichlorostyrene or a mixture of isomeric vinyltoluenes. The Jones et al. patent additionally lists other possible polymeric substrates for use in the described method as including polypropylene, polyisobutylene, polybutene, and copolymers of ethylene and propylene, ethylene and butene, ethylene and styrene, ethylene and vinyl acetate, and ethylene and methyl methacrylate. Possible graft monomers are listed as including styrene, vinyltoluene, vinylxylene, ethylvinylbenzene, isopropyl styrene, para-tert-butyl styrene, dichlorostyrene, bromostyrene, fluorostyrene, or mixtures thereof with acrylic acid, methacrylic acid, acrylonitrile, methacrylonitrile, methyl methacrylate or maleic anhydride.

As is evident from the foregoing, past efforts to provide a polypropylene composition with improved flame retardancy have not been fully satisfactory. Available inert flameproofing additives have exhibited drawbacks such as bloom and interference with desired physical properties. Additionally, polypropylene materials have not been provided with grafted fire retardants which perform as well as the present inventive compositions. Accordingly, there has remained a need for fire retardant polypropylene compositions demonstrating good physical properties, and the applicants’ invention addresses this need.

SUMMARY OF THE INVENTION

Accordingly, a first preferred embodiment of this invention provides a flame retardant graft copolymer composition comprising: ##STR3## in which n is an integer >1, P is polypropylene, and S is a side chain grafted to the polypropylene and having brominated monomeric units of the formula: ##STR4## wherein x=1 to 4, R.sub.1 is H or CH.sub.3, and R.sub.2 is H or a C.sub.1-4 lower alkyl group. In an alternate embodiment, the composition additionally includes a homopolymer of the brominated monomeric units.

Another preferred embodiment of this invention provides a flame retardant polymer composition comprising a blend of (i) polypropylene, and (ii) a polymer composition including a graft copolymer according to the first embodiment above and constituted about 10% to about 60% bromine by weight. Such a blend can be prepared by diluting or “letting down” the bromine-concentrated polymer composition (ii) with a desired amount of polypropylene. After let down, the blend preferably comprises about 1% to about 20% bromine by weight of the blend.

Another preferred embodiment of this invention provides a method for producing a flame retardant polymer composition which comprises the step of graft polymerizing polypropylene with a monomer having the formula: ##STR5## wherein x=1 to 4, R.sub.1 is H or CH.sub.3, and R.sub.2 is H or a C.sub.1-4 lower alkyl group. The invention provides a flame retarding amount of bromine in the graft polymerization product.

One object of this invention is to provide flame retardant polypropylene-based polymer compositions.

Another object of this invention is to provide a method for Producing flame retardant polypropylene-based polymer compositions.

Additional objects and advantages will be apparent from reading the description which follows.
________________________________________________________________________________________________

Download Full Text

Written by

Dr. Enrico J. Termine is a senior executive and scientist with thirty years of experience in business leadership, research & development, product engineering, marketing, and manufacturing. He has consulted for a variety of industrial and legal clients on engagements involving valuations, due diligence assignments, market research reports, strategy development reports, science and technology assessments, and root cause investigations. Dr. Termine is a bromine chemistry expert. He specializes in oilfield applications, flame retardant plastics, industrial and recreational water treatment and disinfection, specialty and fine chemicals, polymer additives, plastics, and organic synthesis for life science molecules and advanced materials. Dr. Termine earned both his Bachelor of Science in Chemistry and his Ph.D. in Organic Chemistry from the University of Miami. He has collaborated on more than 38 patents and publications. His technical contributions are useful in consumer electronics; for petroleum and petrochemical processing; in transportation and industrial products; in healthcare; for industrial and household disinfection; and in building and construction materials.

No Comments Yet.

Leave a Reply

Security Code: